Empirical Prediction of Electronic Potentials of Single-Walled Carbon Nanotubes With a Specific Chirality (n,m)
نویسندگان
چکیده
The determination of the electronic states of single-walled carbon nanotubes (SWNTs) with a specific chirality has been a central issue in the science of SWNTs. Here we present the empirical equations with fitting parameters for the determination of the reduction and oxidation potentials of SWNTs for a wide range of diameters and chiral angles. In these equations, a distinct chirality family dependence of the reduction potentials is observed, while the oxidation potentials show a simple diameter dependence nearly proportional to the inversed nanotube diameter. Based on observations of the asymmetric chirality dependence between the reduction and oxidation potentials, the Fermi levels of the SWNTs were revealed to have a definite chirality family dependence, which indicates that the work functions of the SWNTs with small diameters deviate from the values for the large diameter SWNTs and graphene. We also performed quantum chemical calculations to compare the experiment to the calculations.
منابع مشابه
On the Mechanical Properties of Chiral Carbon Nanotubes
Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...
متن کاملAb Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes
In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...
متن کاملThe Attitude of Variation of Elastic Modules in Single Wall Carbon Nanotubes: Nonlinear Mass-Spring Model
The examination of variation of elastic modules in single wall carbon nanotubes (SWCNTs) is the aim of this paper. Full nonlinear spring-like elements are employed to simulate specific atomic structures in the commercial code ABAQUS. Carbon atoms are attached to each node as a mass point using atomic mass of carbon atoms. The influence of dimensions such as variation of length, diameter, aspect...
متن کاملChirality Assignment: Band Gap Modification of Single- Walled Carbon Nanotubes with Strain
Single-walled carbon nanotubes (SWCNTs) offer a range of potential applications based on their unique one-dimensional structures. Theoretical calculations shows that their electronic structures depend strongly on their chiral vector indices (n,m) which determine the diameter and chiral angle. The graphite wrapping condition n-m=3p+q generates metallic tubes for q=0, while semiconducting tubes a...
متن کاملMolecular Dynamics Investigation of The Elastic Constants and Moduli of Single Walled Carbon Nanotubes
Determination of the mechanical properties of carbon nanotubes is an essential step in their applications from macroscopic composites to nano-electro-mechanical systems. In this paper we report the results of a series of molecular dynamics simulations carried out to predict the elastic constants, i.e. the elements of the stiffness tensor, and the elastic moduli, namely the Young’s and shear mod...
متن کامل